scishow
Were Dire Wolves Actually Real?
YouTube: | https://youtube.com/watch?v=aSqjiJQehek |
Previous: | 5 Animals With Superpowered Senses |
Next: | The Common Houseplant That Hasn’t Flowered in Almost 60 Years |
Categories
Statistics
View count: | 525,720 |
Likes: | 21,523 |
Comments: | 1,234 |
Duration: | 06:12 |
Uploaded: | 2021-04-12 |
Last sync: | 2024-10-24 07:15 |
Citation
Citation formatting is not guaranteed to be accurate. | |
MLA Full: | "Were Dire Wolves Actually Real?" YouTube, uploaded by SciShow, 12 April 2021, www.youtube.com/watch?v=aSqjiJQehek. |
MLA Inline: | (SciShow, 2021) |
APA Full: | SciShow. (2021, April 12). Were Dire Wolves Actually Real? [Video]. YouTube. https://youtube.com/watch?v=aSqjiJQehek |
APA Inline: | (SciShow, 2021) |
Chicago Full: |
SciShow, "Were Dire Wolves Actually Real?", April 12, 2021, YouTube, 06:12, https://youtube.com/watch?v=aSqjiJQehek. |
After watching Game of Thrones or playing DND, you might wonder if Dire Wolves were actually real. Turns out, these were real animals that lived during the last Ice Age, but they weren't actually...wolves? Join Hank Green and learn what these giant creatures really were i this new episode of SciShow!
SciShow is supported by Brilliant.org. Go to https://Brilliant.org/SciShow to get 20% off of an annual Premium subscription.
Hosted by: Hank Green
SciShow has a spinoff podcast! It's called SciShow Tangents. Check it out at http://www.scishowtangents.org
----------
Support SciShow by becoming a patron on Patreon: https://www.patreon.com/scishow
----------
Huge thanks go to the following Patreon supporters for helping us keep SciShow free for everyone forever:
Silas Emrys, Drew Hart, Jeffrey Mckishen, James Knight, Christoph Schwanke, Jacob, Matt Curls, Christopher R Boucher, Eric Jensen, Adam Brainard, Nazara Growing Violet, Ash, Laura Sanborn, Sam Lutfi, Piya Shedden, Katie Marie Magnone, Scott Satovsky Jr, charles george, Alex Hackman, Chris Peters, Kevin Bealer, Alisa Sherbow
----------
Looking for SciShow elsewhere on the internet?
Facebook: http://www.facebook.com/scishow
Twitter: http://www.twitter.com/scishow
Tumblr: http://scishow.tumblr.com
Instagram: http://instagram.com/thescishow
----------
Sources:
Special thanks to Dr. Angela Perri
https://www.nature.com/articles/s41586-020-03082-x
https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-7998.2006.00043.x
https://royalsocietypublishing.org/doi/10.1098/rspb.2004.2986
https://www.nature.com/articles/s42003-020-01569-x
https://www.britannica.com/animal/thylacine
Images:
https://www.istockphoto.com/photo/mammoth-walking-on-snow-covered-hills-mountain-environment-this-is-a-3d-render-gm1214625185-353459400
https://www.istockphoto.com/photo/dire-wolf-head-gm1169035654-323003579
https://www.istockphoto.com/photo/dire-wolf-on-white-gm925090822-253868959
https://commons.wikimedia.org/wiki/File:Canis_dirus_Sternberg_Museum.jpg
https://commons.wikimedia.org/wiki/File:Ice_age_fauna_of_northern_Spain_-_Mauricio_Ant%C3%B3n.jpg
https://commons.wikimedia.org/wiki/File:Dire_Wolf_Skulls_La_Brea_2005-08-01.JPG
https://www.istockphoto.com/photo/the-gray-wolf-or-grey-wolf-is-a-species-of-canid-native-to-the-wilderness-and-remote-gm1216700737-354883930
https://commons.wikimedia.org/wiki/File:Canis_lupus_%26_Aenocyon_dirus.jpg
https://www.eurekalert.org/multimedia/pub/252998.php
https://www.istockphoto.com/photo/two-wolves-gm157279701-423189
https://www.eurekalert.org/multimedia/pub/244066.php?from=478435
https://www.istockphoto.com/vector/human-dna-double-helix-circular-prokaryote-chromosome-and-mitochondrial-dna-gm1159179346-316881551
https://www.istockphoto.com/photo/wolf-near-the-road-gm1218844336-356310748
https://commons.wikimedia.org/wiki/File:Dhole_Asiatic_wild_dog_(Cuon_alpinus)_(5798357684).jpg
https://commons.wikimedia.org/wiki/File:African_wild_dog_(24273710124).jpg
https://www.istockphoto.com/photo/side-striped-jackal-in-the-serengeti-grasslands-gm152154488-14070069
https://www.istockphoto.com/photo/dire-wolf-side-profile-gm1169035723-323003628
https://www.istockphoto.com/photo/wolf-at-bayerischer-wald-national-park-germany-gm970057960-264327500
https://commons.wikimedia.org/wiki/File:Thylacinus.jpg
https://www.istockphoto.com/photo/wolves-running-in-winter-gm508208981-45994740
https://commons.wikimedia.org/wiki/File:Canis_dirus.jpg
https://www.istockphoto.com/photo/silver-wolf-standing-on-a-forest-howling-gm172166960-2425276
https://www.istockphoto.com/photo/arctic-wolves-pack-in-wildlife-gm156323231-21827666
https://www.istockphoto.com/photo/dire-wolf-howling-gm1269164923-372625801
https://www.istockphoto.com/photo/dire-wolf-gm1156349204-315118853
SciShow is supported by Brilliant.org. Go to https://Brilliant.org/SciShow to get 20% off of an annual Premium subscription.
Hosted by: Hank Green
SciShow has a spinoff podcast! It's called SciShow Tangents. Check it out at http://www.scishowtangents.org
----------
Support SciShow by becoming a patron on Patreon: https://www.patreon.com/scishow
----------
Huge thanks go to the following Patreon supporters for helping us keep SciShow free for everyone forever:
Silas Emrys, Drew Hart, Jeffrey Mckishen, James Knight, Christoph Schwanke, Jacob, Matt Curls, Christopher R Boucher, Eric Jensen, Adam Brainard, Nazara Growing Violet, Ash, Laura Sanborn, Sam Lutfi, Piya Shedden, Katie Marie Magnone, Scott Satovsky Jr, charles george, Alex Hackman, Chris Peters, Kevin Bealer, Alisa Sherbow
----------
Looking for SciShow elsewhere on the internet?
Facebook: http://www.facebook.com/scishow
Twitter: http://www.twitter.com/scishow
Tumblr: http://scishow.tumblr.com
Instagram: http://instagram.com/thescishow
----------
Sources:
Special thanks to Dr. Angela Perri
https://www.nature.com/articles/s41586-020-03082-x
https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-7998.2006.00043.x
https://royalsocietypublishing.org/doi/10.1098/rspb.2004.2986
https://www.nature.com/articles/s42003-020-01569-x
https://www.britannica.com/animal/thylacine
Images:
https://www.istockphoto.com/photo/mammoth-walking-on-snow-covered-hills-mountain-environment-this-is-a-3d-render-gm1214625185-353459400
https://www.istockphoto.com/photo/dire-wolf-head-gm1169035654-323003579
https://www.istockphoto.com/photo/dire-wolf-on-white-gm925090822-253868959
https://commons.wikimedia.org/wiki/File:Canis_dirus_Sternberg_Museum.jpg
https://commons.wikimedia.org/wiki/File:Ice_age_fauna_of_northern_Spain_-_Mauricio_Ant%C3%B3n.jpg
https://commons.wikimedia.org/wiki/File:Dire_Wolf_Skulls_La_Brea_2005-08-01.JPG
https://www.istockphoto.com/photo/the-gray-wolf-or-grey-wolf-is-a-species-of-canid-native-to-the-wilderness-and-remote-gm1216700737-354883930
https://commons.wikimedia.org/wiki/File:Canis_lupus_%26_Aenocyon_dirus.jpg
https://www.eurekalert.org/multimedia/pub/252998.php
https://www.istockphoto.com/photo/two-wolves-gm157279701-423189
https://www.eurekalert.org/multimedia/pub/244066.php?from=478435
https://www.istockphoto.com/vector/human-dna-double-helix-circular-prokaryote-chromosome-and-mitochondrial-dna-gm1159179346-316881551
https://www.istockphoto.com/photo/wolf-near-the-road-gm1218844336-356310748
https://commons.wikimedia.org/wiki/File:Dhole_Asiatic_wild_dog_(Cuon_alpinus)_(5798357684).jpg
https://commons.wikimedia.org/wiki/File:African_wild_dog_(24273710124).jpg
https://www.istockphoto.com/photo/side-striped-jackal-in-the-serengeti-grasslands-gm152154488-14070069
https://www.istockphoto.com/photo/dire-wolf-side-profile-gm1169035723-323003628
https://www.istockphoto.com/photo/wolf-at-bayerischer-wald-national-park-germany-gm970057960-264327500
https://commons.wikimedia.org/wiki/File:Thylacinus.jpg
https://www.istockphoto.com/photo/wolves-running-in-winter-gm508208981-45994740
https://commons.wikimedia.org/wiki/File:Canis_dirus.jpg
https://www.istockphoto.com/photo/silver-wolf-standing-on-a-forest-howling-gm172166960-2425276
https://www.istockphoto.com/photo/arctic-wolves-pack-in-wildlife-gm156323231-21827666
https://www.istockphoto.com/photo/dire-wolf-howling-gm1269164923-372625801
https://www.istockphoto.com/photo/dire-wolf-gm1156349204-315118853
Thanks to Brilliant for supporting this episode of SciShow.
Go to Brilliant.org/SciShow to learn how to level up your STEM skills. [♩INTRO]. When you hear the words dire wolf, your mind might jump to Game of Thrones… or Dungeons and Dragons.
But dire wolves are not just in the realm of fantasy and fiction, they were real animals that lived during the last Ice Age. Paleontologists have found thousands of dire wolf fossils at over one hundred fossil sites, but there’s still a lot we don’t know about them, and we’re still finding new surprises. For instance, a study published in 2021 found that dire wolves… aren’t wolves.
We know from the fossil record that dire wolves roamed North and South America between 250,000 and 13,000 years ago, during the Late Pleistocene Epoch. Or, as we sometimes call it, the Ice Age. They were some of the most common predators of the Ice Age.
More than 4,000 dire wolf specimens are known from a single site -- the La Brea Tar Pits in California. Overall, dire wolves are very similar to gray wolves, but with a few key differences: they’re slightly larger at around 70 kilograms, and they have bigger and stronger jaws and teeth. This beefier build might have helped them to hunt larger prey, or to crack more bones to get at the nutrients inside.
But aside from those few differences, dire wolves and gray wolves are so similar that their fossil skeletons can be tough to tell apart. That, plus the fact that both species lived alongside each other in the past, has led paleontologists to infer that they’re close relatives. For a long time, dire wolves have been classified under the scientific name Canis dirus, in the same genus as gray wolves -- Canis lupus.
But the 2021 study really throws a wrench in that idea, with help from ancient DNA. Fossil bones and teeth are great for learning about ancient animals’ lifestyles and relationships with other species, but they don’t always tell the whole story. Ancient DNA can provide clues that are missing in an animal’s anatomy, and it can be especially useful when trying to understand ancestry.
Now, dire wolf fossils are common, but ancient DNA is rare, so the researchers had to cast a wide net. They ended up finding well-preserved DNA in five dire wolf fossils from all across the. U.
S., and they managed to sample both the nuclear genome and the mitochondrial genome. The mitochondrial genome complements the main genome housed in the cell’s nucleus. Together, they can give us a fuller picture.
When they compared this DNA to living canines, they were surprised to find that dire wolves and gray wolves weren’t closely related at all. Now dire wolves are still, of course, canines -- it’s not like they’re bears or something. But based on this genetic comparison, dire wolf and gray wolf ancestors diverged around 5.7 million years ago.
That’s earlier than many other canines, like coyotes, African wolves, African wild dogs, and jackals. An earlier split means a less recent common ancestor. Which means that all those guys—coyotes, and jackals, and African wild dogs—are all more closely related to gray wolves than dire wolves are.
And since none of those things are classified as wolves, that means dire wolves shouldn’t be either, at least not taxonomically. So they probably don’t belong in the genus Canis alongside gray wolves. Instead, we might be better off using another, older genus assigned to dire wolves in the past: Aenocyon.
Aenocyon means “dreadful wolf,” so it’s still suitably impressive. Since dire wolves and gray wolves are so distantly related, the physical similarity between them seems to be a case of convergent evolution -- two species evolving similar features in response to similar pressures. It wouldn’t be the only time evolution has made a wolf.
The extinct thylacine of Australia looks remarkably like a canine -- even though it’s a marsupial. We asked Dr. Angela Perri, lead author of the dire wolf study, why evolution seems to like wolves so much.
She told us it’s hard to say, but it might be that a wolf-like body is an ideal form for a predator. It’s the right size and shape to take down large prey while also being energy efficient for hunting prey over long distances. But unraveling canine relationships doesn’t just give us insight into dire wolf evolution -- it can also help us understand their extinction.
One pretty obvious difference between gray wolves and dire wolves is that gray wolves are still around. It could be that dire wolves, with their buff bods, were specialized hunters who couldn’t survive once their large prey disappeared at the end of the Ice Age. But this study presents another option: genetic isolation.
Canines today -- including wolves, coyotes, domestic dogs, and more -- have a habit of interbreeding. This allows the species to exchange genes and effectively expand their gene pools, which can make them more adaptable in the face of change. For example, modern gray wolves are known to have picked up genes related to immune response from domestic dogs.
That might have helped the wolves resist diseases carried by species migrating into the Americas at the end of the last Ice Age. But dire wolf DNA shows no signs of interbreeding with those other species -- they were genetically isolated. It’s hard to know for sure, but if dire wolves had been swapping genes with their fellow canines, they might have been more adaptable, and we might still have them today… which would be lovely and terrifying.
Given how similar gray wolves and dire wolves look, it’s amazing how dramatically a little bit of DNA can change our understanding of them. Fortunately, even if the genus changes, the common name “dire wolf” is here to stay. Because honestly?
It’s way too cool to get rid of. It only takes a little bit of new knowledge to transform how we see the world. Around here, we’re all about learning -- but so are our friends at Brilliant.
For example, if you’re curious about how we understand all this stuff, and how we incorporate new evidence, Brilliant has a bunch of courses about logic and reasoning, starting with Logic I. It’ll teach you how to draw conclusions from limited evidence without going off the rails. And if you really enjoy it, there are further courses on logic and mathematical reasoning.
If you’re interested, you can learn more, and score 20% off an annual premium subscription, at brilliant.org/scishow. [♩OUTRO].
Go to Brilliant.org/SciShow to learn how to level up your STEM skills. [♩INTRO]. When you hear the words dire wolf, your mind might jump to Game of Thrones… or Dungeons and Dragons.
But dire wolves are not just in the realm of fantasy and fiction, they were real animals that lived during the last Ice Age. Paleontologists have found thousands of dire wolf fossils at over one hundred fossil sites, but there’s still a lot we don’t know about them, and we’re still finding new surprises. For instance, a study published in 2021 found that dire wolves… aren’t wolves.
We know from the fossil record that dire wolves roamed North and South America between 250,000 and 13,000 years ago, during the Late Pleistocene Epoch. Or, as we sometimes call it, the Ice Age. They were some of the most common predators of the Ice Age.
More than 4,000 dire wolf specimens are known from a single site -- the La Brea Tar Pits in California. Overall, dire wolves are very similar to gray wolves, but with a few key differences: they’re slightly larger at around 70 kilograms, and they have bigger and stronger jaws and teeth. This beefier build might have helped them to hunt larger prey, or to crack more bones to get at the nutrients inside.
But aside from those few differences, dire wolves and gray wolves are so similar that their fossil skeletons can be tough to tell apart. That, plus the fact that both species lived alongside each other in the past, has led paleontologists to infer that they’re close relatives. For a long time, dire wolves have been classified under the scientific name Canis dirus, in the same genus as gray wolves -- Canis lupus.
But the 2021 study really throws a wrench in that idea, with help from ancient DNA. Fossil bones and teeth are great for learning about ancient animals’ lifestyles and relationships with other species, but they don’t always tell the whole story. Ancient DNA can provide clues that are missing in an animal’s anatomy, and it can be especially useful when trying to understand ancestry.
Now, dire wolf fossils are common, but ancient DNA is rare, so the researchers had to cast a wide net. They ended up finding well-preserved DNA in five dire wolf fossils from all across the. U.
S., and they managed to sample both the nuclear genome and the mitochondrial genome. The mitochondrial genome complements the main genome housed in the cell’s nucleus. Together, they can give us a fuller picture.
When they compared this DNA to living canines, they were surprised to find that dire wolves and gray wolves weren’t closely related at all. Now dire wolves are still, of course, canines -- it’s not like they’re bears or something. But based on this genetic comparison, dire wolf and gray wolf ancestors diverged around 5.7 million years ago.
That’s earlier than many other canines, like coyotes, African wolves, African wild dogs, and jackals. An earlier split means a less recent common ancestor. Which means that all those guys—coyotes, and jackals, and African wild dogs—are all more closely related to gray wolves than dire wolves are.
And since none of those things are classified as wolves, that means dire wolves shouldn’t be either, at least not taxonomically. So they probably don’t belong in the genus Canis alongside gray wolves. Instead, we might be better off using another, older genus assigned to dire wolves in the past: Aenocyon.
Aenocyon means “dreadful wolf,” so it’s still suitably impressive. Since dire wolves and gray wolves are so distantly related, the physical similarity between them seems to be a case of convergent evolution -- two species evolving similar features in response to similar pressures. It wouldn’t be the only time evolution has made a wolf.
The extinct thylacine of Australia looks remarkably like a canine -- even though it’s a marsupial. We asked Dr. Angela Perri, lead author of the dire wolf study, why evolution seems to like wolves so much.
She told us it’s hard to say, but it might be that a wolf-like body is an ideal form for a predator. It’s the right size and shape to take down large prey while also being energy efficient for hunting prey over long distances. But unraveling canine relationships doesn’t just give us insight into dire wolf evolution -- it can also help us understand their extinction.
One pretty obvious difference between gray wolves and dire wolves is that gray wolves are still around. It could be that dire wolves, with their buff bods, were specialized hunters who couldn’t survive once their large prey disappeared at the end of the Ice Age. But this study presents another option: genetic isolation.
Canines today -- including wolves, coyotes, domestic dogs, and more -- have a habit of interbreeding. This allows the species to exchange genes and effectively expand their gene pools, which can make them more adaptable in the face of change. For example, modern gray wolves are known to have picked up genes related to immune response from domestic dogs.
That might have helped the wolves resist diseases carried by species migrating into the Americas at the end of the last Ice Age. But dire wolf DNA shows no signs of interbreeding with those other species -- they were genetically isolated. It’s hard to know for sure, but if dire wolves had been swapping genes with their fellow canines, they might have been more adaptable, and we might still have them today… which would be lovely and terrifying.
Given how similar gray wolves and dire wolves look, it’s amazing how dramatically a little bit of DNA can change our understanding of them. Fortunately, even if the genus changes, the common name “dire wolf” is here to stay. Because honestly?
It’s way too cool to get rid of. It only takes a little bit of new knowledge to transform how we see the world. Around here, we’re all about learning -- but so are our friends at Brilliant.
For example, if you’re curious about how we understand all this stuff, and how we incorporate new evidence, Brilliant has a bunch of courses about logic and reasoning, starting with Logic I. It’ll teach you how to draw conclusions from limited evidence without going off the rails. And if you really enjoy it, there are further courses on logic and mathematical reasoning.
If you’re interested, you can learn more, and score 20% off an annual premium subscription, at brilliant.org/scishow. [♩OUTRO].