(
04:28)
Let's try it out with a real reaction here on my desk- this is one of my favorites. This is barium hydroxide octahydrate and this is ammonium chloride. Usually we do chemical reactions in aqueous solution because most solids don't interact easily, but this pair is exception to that rule: they react readily in solid form.
This reaction absorbs a lot of heat from the surroundings, making everything around it feel cold. Now to show you how cold it gets, I'm going to do something here, and you're just going to have to assume you understand what I'm doing. "What am I doing? What is happening? Why am I doing this? That's weird Hank. Why are you doing that?" And then I put that on there.
So now I've dumped barium hydroxide in this beaker, I'm gonna dump the ammonium chloride in. And now one of the by-products of this reaction is ammonia so I'm gonna have to smell that, but you don't. Oooh ye-eah, look at that slush. I think we've reacted pretty much completely here and so we should, if all things have gone properly- yep, that's pretty cool- sucked enough heat out of the block of wood to actually freeze it to the beaker.
Normally in chemistry a reaction that proceeds spontaneously and yet absorbs heat is really weird. Basically I have a hard time believing what I just did. So what does entropy have to do with this little freak show? You might think it has something to do with taking the heat from the surroundings to make the system colder, but while that's counter-intuitive and cool, that's not all of it. You might also think that it has to do with two solids combining to form a whole bunch more liquids and gases, and that IS a big part, but still not all. To understand what we just saw a little better, we need to put it all together.
Let's start by finding out exactly how much heat it did absorb and what happened to the entropy as well. First, we'll find the enthalpy change using Hess's Law and standard enthalpies of formation. We can use the coefficients from the balanced chemical equation to fill in the number of moles for each substance. Then we have to look up a whole bunch of numbers (remember, you can find tables like this online and probably in the back of your chemistry textbook too). When we plug the standard enthalpies of formation into the formula and do the math. And we find that the change in standard enthalpy is plus 166 kilojoules. It's positive, which makes sense because the reaction absorbed the thermal energy, enough to create about a half a kilogram of ice if it had been surrounded by water instead of air and fingers.
Next, we'll find the entropy change: remember, the basic equation is the same. We put in the number of moles from the balanced chemical equation and the standard entropies from the table and a quick calculation tells us that the change in standard entropy is 590 joules per Kelvin. A positive result means the entropy of the reaction increased, meaning the products were more disordered than the reactants. Note that the standard enthalpy is in kilojoules while the standard entropy is in joules per Kelvin. The energy units should match, so let's call the standard entropy 0.594 kilojoules per Kelvin.